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ABSTRACT

The dynamics of two-dimensional interacting "line" vortices is

identical to that of the two-dimensional electrostatic guiding center

plasma. Both are Hamiltonian systems and are therefore susceptible

to statistical mechanical treatments. The predictions of the

microcanonical ensemble are explored for this system. Interest

focuses primarily on the regime of total positive interaction energy,

which should be above the Onsager "negative temperature" threshold.

Calculations of the probability distribution for a component by means

of the central limit theorem are carried out in the manner of Khinchin.

The probability distribution of a component reduces to the usual Gibbs

distribution in the regime of positive temperatures, and is still

explicitly calculable for negative temperatures. The negative temper-

ature states are neither quiescent nor spatially uniform. Expressions

for the temperature are explicitly provided in terms of the total

particle energy and particle number. An extensive "thermodynamic

limit" appears not to exist for the system. A BBGKY hierarchy can

be derived for both temperature regimes. A Vlasov approximation on

the first pair of BBGKY equations leads to the differential equation

(two dimensions) V 2Y + sinh Y = O. The charge (vortex) density has

an expectation value proportional to V Y. Numerical simulations

involving solutions of the equations of motion of 4008 particles are

presented.
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I. INTRODUCTION

In 1949, Onsager made what was apparently the first application

of statistical mechanics to a number of interacting discrete "line"

vortices.1 He observed that the finiteness of the total phase space

available had peculiar implications, if one attempted to apply the

standard equilibrium formulas. In particular, above certain values

of the total interaction energy (a constant of the motion), the

thermodynamic temperature was observed to be formally negative.2

Discrete line vortices as a model for two-dimensional hydro-

dynamic flows then received relatively little attention for the follow-

ing twenty years. Two-dimensional continuum models of hydrodynamic

turbulence, in particular the two-dimensional Navier-Stokes equation,

occupied the attention of many investigators,3 -10 who assumed (perhaps

correctly) a greater degree of realism for continuum models. Even now,

the relation between discrete and continuous models of two-dimensional

hydrodynamic fluids remains unclear. But the subject matter of this

article is primarily the discrete vortex model of Onsager1 (see also

Lin 1 ).

The dynamics of the Onsager model has recently been shown to be

identical to that of a two-dimensional guiding-center plasma. In this

model,1 2 very long electrostatically interacting rods remain aligned

parallel to an external magnetic field and move across it with the
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self-consistent e X f drift. This model has been the point of origin

for a number of analytical and/or numerical calculations.'2-20 It is

not our purpose to give a general review or assessment of these here.

We shall be concerned primarily with a semi-rigorous applica-

tion of the methods of equilibrium statistical mechanics to the

guiding center plasma (or equivalently, the line vortex system). An

earlier paper2 1 presented numerical simulations of the motions of

the system and obtained some of the present results heuristically.

Specifically, we are concerned with adapting the apparatus of

the theory of probability in the form given by Khinchin2 2 to obtain

ensemble-average predictions for the states of the guiding center

plasma at arbitrary values of the ratio of the total interaction

energy to total particle number. We anticipate that above certain

values of this ratio,1 macroscopically stationary and spatially

uniform thermodynamic equilibria do not exist.2,17 The novel point is

that, nevertheless, predictions can be extracted concerning the nature

of the macroscopic states. It should be remarked that an understanding

of the material in Chaps. 2, 4, and 5 of Khinchin2 2 is mandatory for a

satisfactory understanding of the present paper.

Section II details the dynamics of the model. Section III

formulates the problem in the language of the theory of probability.

Section IV applies the central limit theorem to calculate the analogue

of the usual Gibbs distribution for the guiding center plasma, though
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the content of the result is radically different. Section V derives an

analogue of the BBGKY hierarchy which applies to negative temperature

states. Section V also treats the hierarchy in the "Vlasov limit,"

leading to a nonlinear partial differential equation which we believe

to be of central importance in the subject. Section VI illustrates

the results with a numerical simulation of the system.
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II. EQUATIONS OF MOTION

The equations of motion of the line vortex system are

dti= E 2 x (1)
jdi xij

where xi = (xi,yi) is the two-component vector which locates the ith

vortex of strength it. = K. ez xij = - xj . Eqs. (1) also

represent the equations of motion of the two-dimensional guiding-

center plasma, if we make the replacement

4Tc ce.B
K= J (2)

j ~B2

where 1f is a uniform magnetic field B = B ez, c is the speed of light,

e. is the charge on the jth rod, and the rods, all aligned parallel

to the z-axis, have a very long length B. We are thus free to discuss

the two systems interchangeably. In most of our discussion, we shall

use the plasma vocabulary.

Eq. (1) can be given a Hamiltonian form by defining canonical

coordinates

(qj,pj) = 1Kj1 (xj,yj sgn Kj) (3)3
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and Hamiltonian function

H = - (2n)' E KK. aIj (4)

id<j

Hamilton's equations

dqi H dPi H 
dt =?Pi ' dt- a

=
q

then reproduce Eqs. (1). Since H is not explicitly a function of

time, it is a constant of the motion for an isolated system. It is

convenient to work with the total Coulomb interaction energy, which

is proportional to H:

g = E, i ~J= -2 E e en i | (6)

ir i<j

The sum runs over all pairs of charges. Hereafter, we shall assume

there are N of +e and N more of -e in a large volume V = L2

It will be.convenient for later purposes to expand the electric

field due to the jth charge (say) in a Fourier series, assuming

periodic boundary conditions over a box of large volume V = L2:
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k i'e
t~x~xj = -E exp ik * (x - Xj) , (7)

and the total electric field due to all charges is

t = Ej tcx; .. (8)

The integral A fV (x)di/8TT can be interpreted as the total

energy 8 if we remember to subtract off the Coulomb self-energy of

each charge. This is the total number of charges times

J f (o)2 di 2r e2 l/2 

The total Coulomb self-energy of all 2N charges (N of the +e and N

more of -e) is, therefore,

rrNe2 2 2
8self = -- /k

It may be useful for some purposes to render 8self finite by cutting

off the F at ' = , say, where k is some maximum wave
mber the reciprocal of which is much less than the mean interparticlemax.

number the reciprocal of which is much less than the mean interparticle
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spacing [L2/2N] . The minimum value of k in Eq. (9) is, of course,

2rr/L. The complete expression for the interaction energy F is, then,

alternatively written as Eq. (6) or

.= f d v-. - eself

y e.e.

=V E i2 exp i ( i - xj) ,

k ij k

where the k is again understood to be cut off at kmax when necessary.

This should be understood as a modification of the Coulomb potential

at distances much less than an interparticle spacing. It is to be

hoped that the essential physics of the situation is unaffected by

this modification, and we shall not inquire into the question of

possible collapse of the system at large negative values of the inter-

action energy,2326 which might result from treating the interactions 

of positives and negatives without a cutoff.
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III. FORMULATION OF THE STATISTICAL PROBLEM

The equation g = const. defines a surface of constant energy

in the phase space of the system. A point on this surface is con-

veniently labelled by giving the values of the coordinates (l, 2, . ..)

for all the charges (vortices) of the system.

If the system occupies a large but finite spatial volume V = L

the total volume of the phase space available to 2N charges varies as

V2N . It is the finiteness of this total available phase space which

gives the system its novel features. (By contrast, the total phase

space available to an ideal gas in a finite spatial volume is in-

finite. 2 2 )

If we define (g8o) = f/ o dx l d x 2 ... as the total volume

of phase space with energy < o,0 then the structure function n(eo),

( to)e ( = fd, dX * 2 . . t. -e )

will necessarily pass through a maximum (at 8 = &, say) as to

increases. The familiar classical formulas for the entropy and

temperature,
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S = X m Q(no) + const.,

will predict formally that when Po > p/, the temperature T will be

negative.1'2 (, is Boltzmann's constant.)

In this article, we are mainly concerned with the following

question. If one makes the hypothesis of equal a priori probabilities,

and assumes a uniform probability distribution for the phase space

variables xl,x
2
, . over the energy shell at p, = no, what is the

probability distribution law for a small component of the system in

its own space?

This is the question the answer to which in the classical cases2 2

leads to the Gibbs distribution: the well-known derivation of the

canonical ensemble from the microcanonical ensemble. For n0 < pi, we

may also expect a Gibbs distribution to result. The more interesting

question is, What will result when o >m ?

Components are defined technically as groups of charges which

interact only weakly with charges in other groups.2 2 That is, the

total energy P. can be written to a good approximation as

= 1 + 2 + ' ' ' + n (12)

in a case where there are n components. Xk is the sum of the pairwise

potential energies for all the charges in the kth component. The
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microcanonical ensemble can then be defined for a system which is

idealized as consisting of n large spatial volumes containing many

charges each, but spatially well separated so that the charges in each

volume interact strongly only among themselves.

The random vector Xl,X
2
, . . is then assigned a probability

distribution

1 24 ( = o -
P(X1lX 2 , · .) =

fdx - dXe2 . . . -

6( Po - P)
( vo ) . (13)

It is shown by Khinchin,2 2 and the proof can be readily adapted for

this system, that the combination law for the structure functions of n

components is

n-l n-l

·i·1 -ii g k X A) n E )- * (14)k=l k=l

Here Qk is the structure function for component k of energy Pk.

Any sum of components satisfying Eq. (12) is also a component.

If the total system is divided into just two components, the proba-

bility distribution law for component 1 (say) in its own phase space

is2 2
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P(1) = nP2(o - q)/s(%) . (15)

The main computational problem we have is in evaluating asymptotic

forms for the terms in Eq. (15), and this is addressed in the next

section.
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IV. APPLICATION OF THE CENTRAL LIMIT THEOREM

The structure function Q(P.) for our system is normalizable,

in the sense that its moments can be assumed to exist. Random-phase

estimates of the first few of these are derived in the Appendix.

n(po) is non-negative and obeys the combination law (14), and so

may be treated formally as a probability distribution law for a sum

of uncorrelated random quantities P P' 2' ' , upon dividing
2NI

each Qk by V . 2N
k

is the total number of charges in the kth

component. 2N = Ek 2Nk is the total number of charges in all com-

ponents.

It is important to realize that not much physical significance

2Nkattaches to the probability distribution laws "2k/V and

Q(f Po) / V
2
Nk = Q(P )/V2N directly. The physically significant dis-

tribution laws are Eqs. (13) and (15). Treating

g(Pb) g(P1 + F2 + ' + f'n)
=v2. V2N~ + n as the probability distribution law

v2N v2 N

of a large number n of uncorrelated random variables is mainly a

mathematical convenience. This convenience lies in the applicability

of the central limit theorem from the theory of probability,2 2 which

enables one to write down asymptotic distribution laws for such sums

as the number n of terms in the sum becomes large compared to unity.

These asymptotic forms can then be used to evaluate Eq. (15).
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Since our Qk's are normalizable, our task is in some respects

simpler than Khinchin's. It is the lack of normalizability of "k's

for systems having a classical unbounded momentum space which

necessitates2 2 introduction of the "generating functions" and

normalizable "conjugate distribution laws" to which the central

limit theorem can be applied. We need not make this detour, but can

apply the central limit theorem directly to the Qk/V2
N

The essential content of the central limit theorem2 2 is that

for relatively mild restrictions on the "k(F-k)'

Q(go) exp- ( o - An)
2
/2Bn (16)

1 (16)
V
2 N

no (2T Bn)

up to terms of O(n- ). 2N is the total number of particles in all

the components: 2N = I 2N
k

. An is defined by

An = ~ kk
k (

n'k)d-kA =ZE akL=E k 2Nk

k=l k=l V

and is the sum of the expectations of the first n random quantities.

Bn is defined by

n n

Bn = bk = (k - ak) 2N
k=l k=l V k



and is the sum of their dispersions. This result is independent of

the detailed nature of the 2
k.

In the Appendix, expressions for ak and bk are derived within

the framework of the random phase approximation. It is shown there

that ak = 0, and (see Eq. (A-10)) bk = (Nke2 /£)2 /T, where 2Nk is

the total number of charges in the kth component. The expression

(16) then implies that up to terms of O(1/n),

_ = exp.- e2E~k3 (17)
V2N 2,nXb b

In the evaluation of formula (15), we treat component 1 as a finite

system, with number of degrees of freedom and total energy as of

0(1). We treat both component two (all the rest of the total system)

and the total system as very large, with number of components and

total energy as of O(n), n >> 1. The sums E
n b and n b are
k=l k k=2 k

both O(n) quantities which differ only by terms of 0(1), so their

difference can be neglected. We find from Eq. (15) that

B bk O(n)
k=l

1 expf- (to - e) o/2B
V1 rP(l) =b (18)

2N
1

exp[- 
0
O2/2B8V
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As long as e << go, Eq. (18) reduces to

P(1) = exp{gPgl/B] (19)

V2 1

When go/B, which is proportional to the total interaction energy,

is negative, Eq. (19) is the canonical distribution of Gibbs, with

positive "temperature" (-T)- 1 = - go/B. The explicit value of B is

B = ,k (Nke 2/) 2/

(components)

where 2N
k

is the total number of charges in the kth component.

For g0 > 0, the canonical ensemble again formally appears, but

the "temperature", -B/go, is negative. P(1) is still normalizable,

however, because of the decay of 521 ( e) at large 01 , for all values

of go. It is meaningful to inquire into the values of ensemble

averages computed with the probability distributions (18) or (19)

just as it is for the more conventional Gibbs distribution. It should

come as no surprise that some of the ensemble averaged quantities have

different qualitative features than they do in the positive-temperature

case, however.

We note in passing that Taylor'sl 8 random phase result, gm = 0,

(corrected for the Coulomb self-energy) has been confirmed by Eq. (19).
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The random phase approximation has been used in the Appendix to

provide a specific numerical value for B, and to show that the ak = 0.

The canonical distribution law of a component, Eq. (19), with

9o/B > O, apparently does not imply an extensive thermodynamic limit

for the component in the conventional sense.2 0 For the expectation

value of the energy of component 1, given by using Eq. (19) in

fdejP( 1)Ql(el)e// deP()1)l(el) , can be shown via the random phase

approximation to vary proportionally to N12 rather than N1, at least

for small, fixed 8o/B. (2N1 is the number of charges in component 1.)

This emphasizes the necessity of rethinking from the beginning any

macroscopic thermodynamic concepts one may wish to apply to this

model. Variables such as the total energy are not extensive in the

usual thermodynamic sense.
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V. BBGKY HIERARCHY

The canonical distribution (19) can be used as the basis for a

BBGKY hierarchy even though 9o/B may be positive. Define the pro-

bability distribution of the first si positive charges and s
e
negative

charges by, as usual,1 3'2 0

i ' d e e de P()

1n =e V i e+1 'N 11 +1 N1

(20)

Here, xQ is the vector position of the Qth"ion", and xQ that of the

£th"electron". P(1) is given by Eq. (19). Setting 9 -- B/g ,

nsi 8s e nsis e ab(si, s e )
+e a -4 e

3ki 3i

= - J d +l
1

- S +1
e

ei( e -i 

j - Xs.i+l

4e
ax .

3

ee( 4 e _ -e

e
4e
J

nsi+1, s1 e

n
Si'Se+l (21)
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Here j is any number between 1 and se, and n
o

= N1/V.

ii ee ei ie
i = - = - p = is the two-body Coulomb interaction of

Eq. (6). ~(si,s
e
) is the sum of the pairwise Coulomb interactions

among the first s. ions and the first s electrons. A similar hierarchy
1 e

can be obtained by taking gradients with respect to ion coordinates.

The hierarchy (21) is identical with the conventional hierarchy2 0 except

that e may be negative, and is so in the case of most interest.

For negative temperatures, Eqs. (21) will not be tractable by

the usual methods. We do not expect nl, and no, 1 to be spatially

uniform for 0 < 0. It is interesting to try a "Vlasov approximation"

on (21), approximating n2 0 o nl, o nl = no 0 no 1

and nl, 1 = nl, no,1 The result is

. ei( e i 

bnlo no b e( ) i -e

b _ nle o (l )1 no,l(Xl
ii 4e i e

bxkz

f xn p( Xl - x ) i o i

x -,
)

e 
_

,
o (

1 X2 ) 2 (22)
ei -i - e)

0 dj 2 i 10(x1)n l(X)
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Eqs. (22) can be rewritten as

a+e { no x )
bxl

+ q dx ee,(+e
+ 7f 1

- 1,o(x') = 0

) + ii i0 1~~x

no, lx'(X ) = 0

Adding Eqs. (23) gives

- [en no 1(x) +

or n
0 1

nl,
0

= cons0t.

no ,1( = c1 ex7

(24)nl ,o(X-] = O ,

Integrating Eqs. (23) gives

Jd' x -x )[nl, (X ) - no 1

n·· -·(- n /·:, -,,ep- 9 Z1q -- - x+ ") [rfn. , o(X )

(23)

- no, l(x

(25)

- X'')[no 1('X)

nl, o(Xl -x )[nl,o(X)

\1

p

nl ,o(Z)
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c1 and c2 are two constants of integration satisfying c1 c2 = no, 1 nlo

which are to be determined by requiring that

V J 11(i)dix = V n 
o
(dx = 1 ; (26)

and x - ')= - (2e2/£)nlx -I '- 

Defining p(x - nl o(x - no, l(x) , Eqs. (25) can be combined

to give

p(x4 = - c0 exp ( 2x fx )p( x 

+ C2 exp (- fe ·d. ix - x )p(x ) (27)

On physical grounds, we expect antisymmetry of the charge distribution

about the center of the box, which permits us to restrict attention

to the case cl = c2 = c, where

c = V/fdx exp ( 0 ') x - x ( > (28)

If we then introduce a scalar potential,

e (x -n- ')p(x')dx'' , Eq. (27) becomes
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V2 = 4 eo el[exp( exp i (29)

In a more compact notation, let ' - e /[O and 2 = 'D2 V2/c , with

AD2 = el 0/4nno e2 , and Eq. (29) becomes

2 Y + sinh Y = O (30)

The nonlinear differential equation (30) determines the charge-

density distributions for the negative-temperature states. It was

derived by a quite different method in Reference 21. Easily soluble

in one dimension, it is apparently intractable in two, and will pro-

bably require numerical investigation. It is to be noted that if

the sign of e were reversed, the sign of the sinh ' term would be

reversed in Eq. (30), leaving us with the Debye-Poisson equation

in two dimensions. One effect of the negative temperature is to con-

vert its exponentially damped linearized solutions into spatially

oscillatory ones.2 1 This set of spatially oscillatory linear solu-

tions can be fit into the box with either perfectly-conducting or

periodic boundary conditions to give density distributions qualitatively

similar to those in Ref. 21, but no quantitative agreement has yet been

achieved.
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VI. SIMULATION RESULTS

We do not yet know analytical ensemble average predictions

for the charge densities that would follow from the solutions of

Eq. (30), nor analytical estimates of the fluctuations to be expected

about the ensemble average. It is perhaps instructive to present as

an illustration the results of numerical simulations of the high-energy

states of the system. These are expected to be a pair of macroscopic

counter-rotating vortices. 21 17

More details of the program by which the equations of motion

of 4008 particles obeying the dynamics of Sec. II are presented

elsewhere.2 1 ,2 7 The charges are confined by a perfectly conducting

boundary (for the vortex problem, the boundary is therefore a

streamline) inside a rectangle of width one half the length. Loading

schemes have been developed which permit arbitrary initial values to

be assigned to the total energy. Most of the phase space available

to the system which is consistent with very high energies corresponds

to configurations in which the positive charges crowd together in

one half of the box while the negatives crowd together in the opposite

half. The macroscopic flow pattern this corresponds to consists of

two spatially-separated counter-rotating vortices.

Shown in Fig. 1 is a plot of the fluid velocity vector at

t = 0 and t = 160 (see Reference 21 for a discussion of the units)
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for the case in which the total interaction energy for the particle-

in-cell model is 2.3 times the self-energy. In Fig. 2, similar plots

are given for t = 0 and t = 375 for an interaction energy 0.43 times

the self-energy. The degree to which the macroscopic counter-

rotating vortices form and the speed with which they form both

qualitatively increase as the interaction energy increases. The

capacity of such plots as Figs. 1 and 2 to display any such macro-

scopic ordering as the interaction is decreased disappears before

the threshold (zero interaction energy) is reached. But it has been

noted elsewhere2 l that spectral density plots of I|(kx,ky)12 do show

qualitative differences above and below zero interaction energy.
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APPENDIX: RANDOM PHASE APPROXIMATION TO Q(g.o)

In this Appendix, we elaborate and extend Taylor's approximatel8

calculation of

Q(eO)= f d o 2 * 6(2' g) (A-1)

where g is given by Eq. (10). In addition, we are interested in

determining the moments of Q(eo) and the character of its approach

to zero at large go.

The essence of the random phase approximation as applied to

this problem is the introduction of the variables r

ee~~~~~ ~k

p = j j exp(- ik - Xj) r exp(ic) (A-2)

as independent variables in place of the particle coordinates x..

It is assumed that convergence can be achieved by taking the number

independent k's as equal to the number of degrees of freedom (in

this case 4N) and taking both very large. This large number can be

identified with the number of k's in the sums of Sec. II. The random

phase approximation to the energy amounts to a neglect of terms with

k + ' O in the double sum
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k2kk2 PZ Pa, (A-3)
k2,k t

This reduces h2 to the random phase expression

=2= 162 Z r'2 /k2 (A-4)

independently of the values of the phases kcp 

It is then possible to show that the transformation

has the Jacobian

(Xl2 2

2Ne 2Ne

and any integral of the form rf ld2. can be converted to one
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over J dr dr . . , provided that the integrand depends only

1 2

on the r2 s and not the cp's.
k k

With these remarks, and in view of (A4) and Eq. (10), we see

that we can write the expression (Al) as

= 0 22 dx dx 2. . exp ix(E - )

V2N
2rr

2
ik2rr Vri

f: dAf -er2 exp
2Ne

i+ 4rNe2 _ 2 V2 r27exp i\ % o

gVk
2

2Ne
2

0
(A-6)

All the integrals over the dr can be done, and Eq. (A-6) can be

written compactly as

dX exp iX (g0 + - I
~ ( rr ie25"'

-2) + A(X)j ,k2

(A-7)

where

A(X) -- en(l + ia2 A/k2) , 2 = 4nNe2/ eV
k

V2N = c

( o) 2= r
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A steepest-descent approximation to Eq. (A-7) suggests itself,

since the coefficient of X is, in the case of interest, a very large

quantity when N >> 1. This can be used to show that dQ(e 0)/d.°
= O

when go = O. Thus the threshold for negative temperatures is 0° = O.

(This is Taylor's result,1 8 when the Coulomb self-energy is taken

properly into account.)

Moments of the type

(0om) =- /dgOeomQ(eo)

can also be evaluated by noting that

feomQ( eo)deo

2= df (- i )d 8( exp ki(4¶W l + A(?

V2N L(dim /k + A(X

n L. dprcma {o
°

= (

N

(nd eV ) /(

In particular, (eo > = V0, and

(eO> =° (A-9)
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2 (e) =e ( 2 (A-10)

(These are the results needed in Sec. IV.)

By writing Eq. (A-7) in the form (W2 = 4nNe2/.V)

n( 0b)00 dX X( Po ' 8self(A-11)rr e (1 + ia2X/k2 )~1 . (A-li)

We can determine the way in which Q(eo) falls off at large o.'

('o + gself is never negative.) As to ; + ' , we may push the contour

of X integration up in the complex plane and encounter an infinite

sequence of (multiple) poles at X = ik2 /a2 . The closest ones of these

are at 
I| = 2n/L, and give an asymptotic decay of Q( go) as

P(gO) exp [- o 4T2/a 2L2] , as o- * , where C( ) is a poly-

nomial of degree at most equal to the multiplicity of the pole at

X = i(2) 2/L2a 2 . For a range of eo > 0 this means that Eq. (19) is

normalizable directly, but above that range of o we must use (18)

to insure normalizability.
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FIGURE CAPTIONS

Fig. 1 The fluid velocity vector field as a function of spatial

position for the case of 4008 particles with interaction

energy - 2.3 times the self energy: (a) initially and

(b) at t = 160.0. The velocity field at all later times

is qualitatively similar to that at t = 160. The lengths

of the arrows are normalized to V-MAX, the maximum dimen-

sionless velocity present at any instant. This case should

correspond to negative temperatures.

Fig. 2 The fluid velocity vector field as a function of spatial

position for the case of 4008 particles with interaction

energy - 0.43 times the self energy: (a) initially and

(b) at t = 375. The lengths of the arrows are normalized

to V-MAX, the maximum dimensionless velocity present at

any instant. This case should correspond to positive

temperatures. The velocity field in (2b), which is similar

at all later times, differs from that in (lb) by the ab-

sence of the two larger vortices.
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